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Coordination Number

Location of Interstitial

Radius Ratio

Representation

2

3

Linear

Center of triangle

Center of tetrahedron

Center of octahedron

Center of cube

0-0.155

0.155-0.225

0.225-0.414

0.414-0.732

0.732-1.000
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For potassium chloride (KCI), (a) verify that the compound has the cesium chloride
structure and (b) calculate the packing factor for the compound.

SOLUTION

a. From Appendix B, rg+ = 0.113 nm and r¢cp- = 0.181 nm, so

R 0.133
= = 0.735
Fcr 0.181

Since 0.732 << 0.735 << 1.000, the coordination number for each type of 1on is eight,

and the CsCl structure 1s likely.
b. The ions touch along the body diagonal ot the unit cell. so

N Bag = 2rg+ + 2ro- = 2(0.133) + 2(0.181) = 0.628 nm
ag = 0.363 nm

%’n’ri”(+(l K ion) + %117;*%1— (1 Clion)

GS

Packing factor =

5 7(0.133)3 + Fm(0.181)° 074
- (0.363)3 T
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Point Defects

Foint defects are localized disraptions in otherwiss perfect alomic Or 10onic arrangemaents in
a crystal structure. Even though we call them point defiects, the disruption affects a region
imvolving several atoms or ions These imperfections, showmn in Figure 4-1. may be imtro-
duced by moverment of the atoms or ions when they gain energy by heating, durng process—
img of the material, or by the Intentional or unintentional ntroduction of ImMmpurities.

Cedp = (L

Figure 4-1 Foint defects: (a) vacancy, (b)) interstitial atom, (c)} small substitutiomal atom,
(d} large substitutional abom, (=) Fremksl defect, amnd (F) Scholtiky defect. All of these defecits
disrupt the perfect arrangsment of the =umounding atorms.
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E-I:Ige Dislocations Ao edge dislocation ( Figure 4-5)% can be illustrated by
slicing partway through a perfect crystal, spreading the crvstal apart, and partlhy filling
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Figure << The perfect crystal (a) is cut and sheared one atom spacing, (b) and c). The
line along which shearing occurs is a screw dislocation. A Burgers vector b is reguired to

close a loop of egual atom spacings arcound the screw dislocation.
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Figure 4-5 The perfect crystal in {a) is cut and an extra half plane of atoms is inserted
{b). The bottonm edge of the extra half plana is an edge dislocation (c). A Burgers wector b is
reguired to closs a loop of egual atom spacings arcound the edege dislocation. (Adapted friom

S0 Verhoswven, Fundamaentals of Physical detalfurey, Wiley, 1975
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Shear stress Shear stress
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Figure 4-7 (a) When a shear stress is applied to the dislocation in (a), the atoms are displaced,
(b) causing the dislocation to move one Burgers vector in the slip direction. (c) Continued
movement of the dislocation eventually creates a step (d), and the crystal is deformed. (Adapfed
from A.G. Guy, Essenfials of Materials Science, McGraw-Hill, 1976.) {(e) The motion of a
caterpillar is analogous to the meotion of a disiocation.
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Figure 4-13 (a) A resolved shear stress 7z is produced on a slip system. [Note: (¢¢ + A) does
not have to equal 90°.] (b) Movement of dislocations on the slip system deforms the

material. (c) Resolving the force.

In order for the dislocation to move in its slip system, a shear force acting in the slip
direction must be produced by the applied force. This resolved shear force Fj is given by
F, = Fcos A

If we divide the equation by the area of the slip plane, 4 = A4;,/cosd¢d, we obtain the fol-

lowing equation known as Schmid’s Iaw:

T, = O cOs ¢p cos A (4-3)

where

Ty = j = resolved shear s7ress in the slip direction

F
= g normal s7ress applied to the cylinder
o
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4-4 SCHMIDY'S LAWY 29

(111

[110]

FIGURE 4-12 A narmal stress o is applied in the [001] direction of

the unit cell. This produces an angle 7 of 45* ta the [101] ship
awrection and an anqgle ¢ of 54.76 to the normal to the [111) plne.

[See Erampie 4-6.)

Answer:
By imspection J-= 45% and cos 1w 0.707. The normal to the (111) plane must

be the [11]] direction. We can then calenlate that

0.577 or W - 51767
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Small Ang le Grain Boundaries A small angle grain boundary is an
array of dislocations that produces a small misorientation between the adjoining crystals
(Figure 4-18). Because the energy of the surface is less than that of a regular grain bound-
ary, the small angle grain boundaries are not as effective in blocking slip. Small angle
boundaries formed by edge dislocations are called tilt boundaries, and those caused by

screw dislocations are called twist boundaries.

Figure 4-18

The small angle grain boundary is produced by an array of
dislocations, causing an angular mismatch # between the lattices
on either side of the boundary.
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Stﬂﬂkiﬂg Faults Stacking faults, which occur in FCC metals, represent an

error in the stacking sequence of close-packed planes. Normally, a stacking sequence of
ABC ABC ABC is produced in a perfect FCC crystal. Suppose instead the following
sequence 1s produced:

ABC ABAB CABC
Y

In the portion of the sequence indicated, a type A plane replaces a type C plane. This
small region, which has the HCP stacking sequence instead of the FCC stacking sequence,
represents a stacking fault. Stacking faults interfere with the slip process.
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(S 1T W Sy Bl Burgers Vector Calculation

Calculate the length of the Burgers vector in copper.

SOLUTION

Copper has an FCC crystal structure. The lattice parameter of copper (Cu) is
0.36151 nm. The close-packed directions, or the directions of the Burgers vector,
are of the form (110}. The repeat distance along the {110} directions is one-half
the face diagonal, since lattice points are located at corners and centers of faces
[Figure 4-10{a)].

Face diagonal = Vv 2a, = (V2)0.36151) = 0.51125 nm

The length of the Burgers vector, or the repeat distance, is

1
b = B (0.531125)nm = 0.25563 nm

M

b
. _ s —— T
= — - g
e _~|.r_
2 ay —=
(110]
(a) (b}

Figure 4-10 (a) Burgers vector for FCC copper. (b) The atom locations on a (110}
plane in a BCC unit cell (for Examples 4-7 and 4-8, respectively).
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FIGURE 4-14 Point defects: (a) vacancy, (b) Interstitial atom, (c) small substitutional
atom, (d] large substitutional atom. (e) Frenkel defect. and (f) Schottky cefect All of these
defects disrupt the perfect arrangement of the surrounding atoms.
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FIGURE 4-20

he small angle
§3n boundary Is
groduced by an
wray of
avocations,
cxsing an
angular mismatch
‘) between the
xixes on either
“Ce of the
Soundary.

FIGURE 4-17 The atoms near the
boundaries of the three grains do not have an
equilibrium spacing or arrangement.

Edge
(a (b) dislocation (©

FIGURE 4-2 The perfect crystal in (a) is cut and an extra plane of atoms is inserted
(b). The bottom edge of the extra plane is an edge dislocation [c). A Burgers vector b
is required to close a loop of equal atom spacings around the edge dislocation.

Screw
dislocation

P =
o
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o) (] (e)
FIGURE 4-1 The perfect crystal (a] is cut and sheared one atom spacing, (b) and
_[:). The line along which shearing occurs is a screw dislocation. A Burgers vector b
is required to close a loop of equal atom spacings around the screw dislocation.
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FIGURE 4-6 A shear force 2cting on a dislocation introduced into
a perfect crystal (a) causes the dislocation to mowve through the the s Cire
crystal until a step is created (c). The crystal is Nnowvs deformed. (<)-

G - 3
Edge ‘
b dislocartion (100) face
= Slip plane F
Y Gy Slip
b direction />
(223 (222) — O. %. ¥ siee
* s 3
FIGURE 4-3 The Burgers FIGURE 4-4 After the Burgers - . “I R T
vector for Example 4-1 is vector is transiated from the loop to '
perpendicul:lr to the (222) the dislocation line, a plane is
ptanes and has a3 length equal defined.
l + l

to the interplanar spacing
- penvreen (222) planes.
FAIGURE 4-16 The location of the O. §. §
eterstitial site in BCC metals. showing the
xrangement of the nNnormal atoms and the
rterstitial atom.
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Twin Boundaries A twin boundary is a plane across which there is a special
mirror image misorientation of the crystal structure (Figure 4-19). Twins can be produced
when a shear force. acting along the twin boundary. causes the atoms to shift out of posi-
tion. Twinning occurs during deformation or heat treatment of certain metals. The twin
boundaries interfere with the slip process and increase the strength of the metal. Twinning
also occurs in some ceramic materials such as monoclinic zirconia and dicalcium silicate.

Boundary Boundary
(a) (b)

(c) (d)

Figure 4-19 Application of stress to the (3) perfect crystal may cause a displacement
of the atoms, (b) resulting in the formation of 2 twin. Note that the crystal has deformed
as a result of twinning. (c) A micrograph of twins within a grain of brass (< 250}.

(d) Domains in ferroelectiric barium titanate. (Couwrfesy of Dr. Rodney Roseman,
University of Cincinnati.) Similar domain structures occur in magnetic materialis.
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At room temperature (~298 K), the concentration of vacancies 1s small, but the

concentration of vacancies increases exponentially as the temperature increases, as shown
by the following Arrhenius type behavior:

where

H, = hexp (;T?:) (4-1)

n, is the number of vacancies per cm;
1 is the number of atoms per cm':

(0, is the energy required to produce one mole of vacancies, in cal/mol or Joules/ mol;

cal Joules
o or 8.314 —— and

T'1s the temperature in degrees Kelvin.

R 15 the gas constant, | 987
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Example -1 The Effect of Temperature on Vacancy Concentrations

Calculate the concentration of wacancies in copper at roomm temperature ( 25%C).
What temperature will be needed to heat treat copper such that the concentratiomn of
vacancies produced will be 1000 times more than the egquilibrinm concentratiomn of

vacancies at room temperature? Assume that 20,000 cal are reguired to produce a
mole of vacancies in copper.

vy elsolucionario. net
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CHAPTER 4 Imperfections in the Atomic and lonic Arrangements

SOLUTION
The lattice parameter of FOCC copper is 0.36151 mm. There are four atoms per unit
cell: therefore, the number of copper atoms per crm® is
<4 at sfcell -
= artomsoe T = B_A66 = 1027 COp T atomsfcm >
(F6151 >= 10 % cm)

At room temperature. ¥ = 25 + 273 = 208 K:

L, = M exp (;Q.L
= ) Frar

cal

— 20 D —
(8455x1q2atcms)ep el
— . o2 x
cal
1.987 ———— ZO8 K
( el - K){ )

— 1.814 > 10% wvacancies cm™>

We whish to find a heat treatment temperature that will lead to a concentration of vacan-—
cies that is 1000 times higher than this number. or n,, — 1.814 > 10" vacancies/cm>.

We could do this by heating the copper to a temperature at which this number
of wvacancies forms:

— 1.814 = 1011 — : (7_5-2"
e, nrexp R
— (B.466 > 1072 exp ( —20.000) (1. 987 T)
— 20 OO 1.81a4 > 10!
— = — 0. 214 > 10 '
e"p( 1. 98771 8466 > 1022
— 20 MO
—_—— = {214 > 101y = —26.87
1.987 7T ny( )
20, OO
T — — ATSE — 102°C

(1. 93TH26.87)
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Fig. %4 Schemalic representation of slip in tension. (@)
Belore straming. (8} with ends nat constrained, (¢] ends
reactrgirect (From B. Do Cullity. " Erements of X-ray
Dhlfeaction,” Addison-Wesley Publishing Cempany, Inc.,
Aeading. Mass,, 1956.)

packed [110] direction, a distance of one lattice dimension or multiple
of that dimension. The series of steps formed will generally appear under
tha microscope a8s a group of approximately parallal lines (Figs. 3-7 and
3-8). In Fig. 3-7. & single vertical line was scribed on the surface before
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' {00T) Plane

[T1o]) pirection
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Fig. 35 Slip plane and slio direction in an f.c.c. lallice.



